Особенности обработки жаропрочных сталей и титановых сплавов. Обработка титана: изначальные свойства материала, трудности и виды обработки, принцип работы, приемы и рекомендации специалистов Точение титана

Резка и мех.обработка

Титан и его сплавы плохо обрабатываются резанием, что обусловлено рядом физико-механических свойств титана. Титановые сплавы отличаются высоким отношением предела текучести к временному сопротивлению разрыва. Это соотношение составляет для титановых сплавов 0,85-0,95, в то время как для сталей оно равно 0,65-0,75. В итоге при механической обработке титановых сплавов возникают большие удельные усилия, что приводит к высоким температурам в зоне резания, обусловленным низкой тепло- и температуропроводностью титана и его сплавов, затрудняющей отвод тепла из зоны резания. Из-за сильной адгезии и высоких температур титан налипает на режущий инструмент, что вызывает значительные силы трения. Налипание и приваривание титана на контактируемые поверхности режущего инструмента приводят также к изменению его геометрических параметров. Отклонение геометрических параметров режущего инструмента от оптимальных их значений приводит к дальнейшему повышению усилий обработки и температуры в зоне резания и износа инструмента. Температура в зоне резания наиболее сильно повышается с увеличением скорости резания, в меньшей степени - с увеличением подачи. Глубина резания по сравнению со скоростью и подачей оказывает еще меньшее влияние.

Трудоемкость механической обработки титановых сплавов в 3-4 раза больше, чем для углеродистых сталей, и в 5-7 раз выше, чем для алюминиевых сплавов.

По данным ММПП "Салют", коэффициент относительной обрабатываемости по отношению к стали 45 составляет 0,35-0,48 для титана и сплавов ВТ5 и ВТ5-1 и 0,22-0,26 для сплавов ВТ6, ВТ20 и ВТ22. При механической обработке титановых сплавов рекомендуются малые скорости резания при небольших подачах с обильной подачей охлаждающей жидкости. Для обработки титановых сплавов резанием применяют режущий инструмент из более износостойких быстрорежущих сталей, чем для обработки сталей, отдавая предпочтение твердым сплавам. Однако даже при соблюдении всех описанных мероприятий режимы резания, особенно скорости, должны быть снижены по сравнению с обработкой сталей в 3-4 раза для обеспечения приемлемой стойкости инструмента, особенно при обработке на станках с ЧПУ.

Усилия резания и температуры в зоне резания могут быть существенно снижены механоводородной обработкой, включающей в себя наводороживание, механическую обработку и вакуумный отжиг. Легирование титановых сплавов водородом приводит к значительному снижению температур в зоне резания, уменьшению сил резания, повышению стойкости твердосплавного инструмента в 2-10 раз в зависимости от режимов резания и природы сплава. Этот позволяет повысить скорость резания в 1,5-2 раза при сохранении других параметров резания или применять более высокие подачи и глубины резания, не меняя скорости резания.

При высоких температурах, которые развиваются в зоне резания, титановая стружка и обрабатываемая деталь окисляются. Окисление стружки создает проблемы, связанные с её очисткой при вовлечении отходов в плавку и других способах её утилизации. Окисление поверхности обрабатываемых деталей в недопустимой степени может привести к снижению эксплуатационных характеристик.

При изготовлении деталей и конструкций из титановых сплавов применяют все виды механической обработки: точение, фрезерование, сверление, шлифование, полирование.

Важной особенностью механической обработки деталей из титановых сплавов является необходимость обеспечения ресурсных, в особенности усталостных, характеристик, которые в решающей степени обусловлены качеством поверхностного слоя, образующегося после обработки резанием. Вследствие низкой теплопроводности и высокой химической активности обрабатываемого материала применение шлифования как процесса финишной обработки для титановых сплавов ограничено. При шлифовании титановых сплавов легко образуются прижоги, которые существенно снижают усталостную прочность. Кроме того, при шлифовании в поверхностном слое возникают остаточные напряжения растяжения и дефектные структуры, также снижающие усталостную прочность. Поэтому шлифование, если оно используется при обработке деталей из титановых сплавов, должно проводиться при пониженных скоростях и по возможности заменяться лезвийной обработкой либо низкоскоростными методами абразивной обработки, такими, например, как хонингование. Если же применяется шлифование, оно должно выполняться при строго регламентированных режимах с последующим контролем на отсутствие прижогов и сопровождаться упрочнением поверхностным пластическим деформированием (ППД).

Из-за больших усилий резания для механической обработки титана и его сплавов применяют, в основном, станки крупных моделей (ФП-7, ФП-9, ФП-27, ВФЗ-М8 и др.). Наиболее трудоемким процессом при изготовлении деталей является фрезерование. Особенно большие объемы фрезерных работ приходятся на изготовление силовых деталей каркаса самолета: шпангоуты, траверсы, лонжероны, нервюры, балки.

При разработке и внедрении технологии механической обработки деталей из титановых сплавов достаточно широко используются малооперационные технологические процессы за счет совмещения нескольких операций в одну при выполнении её на одно- и многоинструментальном оборудовании. Эти технологические операции наиболее целесообразно выполнять на многооперационных станках (обрабатывающих центрах). Так, например, силовые детали из штамповок изготавливают на станках ФП-27С, ФП-17СМН, МА-655А; детали типа "корпус", "колонка", "кронштейн" из штамповки и фасонной отливки - на станках МА-655А, Me-12-250, "Горизон", панели из листа - на станке ВФЗ-М8. На этих станках при обработке многих деталей реализуется принцип "максимальной" законченности обработки в одной операции, что достигается установкой на стол станка одновременно нескольких различных приспособлений с последовательной обработкой детали с двух и более сторон по одной программе.

Фрезерование переменных малок при изготовлении деталей типа "нервюра", "балка", "траверса" осуществляется несколькими методами:
1) на универсально-фрезерных станках с помощью специальных механических или гидравлических копиров;
2) на гидравлических копирно-фрезерных станках по копирам;
3) на трехкоординатных станках с ЧПУ:
- специальными сборными фрезами с изменяемым в процессе обработки углом;
- фасонными выпуклыми и вогнутыми радиационного профиля фрезами;
- концевыми фрезами с приведением к цилиндрической поверхности путем наклона детали к плоскости стола под определенным углом;
4) на многокоординатных станках с ЧПУ типа ФП-14, ФП-11, МА-655С5.

Для механической обработки авиационных материалов в нашей стране разработан ряд станков, соответствующих лучшим мировым образцам, а иногда и не имеющих аналогов в мировой практике:
- продольно-фрезерный трехкоординатный трехшпиндельный станок ВФ-33 с ЧПУ, предназначенный для одновременной обработки тремя шпинделями монорельсов, панелей, балок, нервюр и других деталей легких и тяжелых самолетов;
- продольно-фрезерный четырехкоординатный трехшпиндельный станок 2ФП-242В с двумя подвижными порталами и ЧПУ, предназначенный для обработки крупногабаритных панелей и лонжеронов переменной малкой для широкофюзеляжных и тяжелых самолетов;
- горизонтально-фрезерно-расточный пятнадцати координатный с ЧПУ станок ФРС-1 с подвижной колонной; он предназначен для обработки стыковых поверхностей крыла и центроплана широкофюзеляжных самолетов;
- гибкий производственный модуль СГПМ-320, включающий в себя токарный станок с ЧПУ АТ-320 с магазином на 13 инструментов и автоматический манипулятор установки и съема детали, управляемые от ЧПУ;
- гибкий производственный комплекс АЛК-250, предназначенный для изготовления прецизионных корпусных деталей гидроагрегатов.

Для обеспечения оптимальных условий резания и высокого качества поверхности деталей следует строго соблюдать геометрические параметры инструмента из быстрорежущих сталей и твердых сплавов.

Точение кованых заготовок осуществляется резцами с пластинками из твердого сплава ВК8. При обработке по газонасыщенной корке рекомендуют следующие геометрические параметры резцов: передний угол γ=0°; задний угол α = 12°; главный угол в плане φ1 = 45°, вспомогательный угол в плане φ = 14°. Режимы резания: скорость резания v = 25 - 35 м/мин, подача s = 0,5 - 0,8 мм/об, глубина резания t не менее 2 мм.

При чистовом и получистовом непрерывном точении применяют инструмент из твердых сплавов ВК4, ВК6, ВКбм, ВК8 и др. при подаче s = 0,1 - 1,0 мм/об, скорости резания v = 40 - 100 мм/мин и глубине резания t = 1 - 10 мм. Возможно также применение инструмента из быстрорежущей стали (Р9К5, Р6М5К5, Р9М4К8). Рекомендуемые геометрические параметры резцов из быстрорежущей стали: задний угол α = 10°, φ = 15°, радиус при вершине r = 1 мм. Режимы резания при точении титана v = 24 - 30 м/мин, s t = 0,5 - 3 мм.

Фрезерование титана и его сплавов затруднено из-за налипания титана на зубья фрезы и их выкрашивания. Для рабочих частей фрез применяют твердые сплавы ВК4, ВК6М, ВК8 и быстрорежущие стали Р8МЗК6С, Р9К5, Р9К10, Р6М5К5, Р9М4К8. При фрезеровании титана фрезами с пластинками из сплаваВК6М рекомендуют следующие режимы резания: s = 0,08 - 0,12 мм/зуб, v = 80 - 100 м/мин, t = 2 - 4 мм.

Сверление титана и его сплавов также осуществляется с трудом из-за налипания стружки титана на рабочие поверхности инструмента и ее скопления в отводящих канавках сверла, что приводит к сильному повышению сопротивления резания и быстрому износу сверл. Поэтому при сверлении глубоких отверстий необходимо периодически выводить инструмент для очистки его от стружки. Для сверления применяют инструмент из быстрорежущих сталей Р9К5, Р9К10, Р18Ф2, Р9Ф5, Р6М5К5, Р9М4К8, Р12Ф2К8МЗ и твердого сплава ВК8. Рекомендуемые геометрические параметры сверл: φ = 0 - 3°, α = 12 - 15°, = 120 - 130°, 2φ0 = 70 - 80°, угол наклона спиральной канавки 25-30°.

Для увеличения производительности механической обработки титановых сплавов резанием и повышения стойкости режущего инструмента применяют галлоидосодержащие смазывающе-охлаждающие жидкости типа РЗ СОЖ-8. Охлаждение обрабатываемых деталей осуществляют методом обильного полива. Использование галлоидосодержащих жидкостей при механической обработке приводит к образованию на поверхности титановых деталей солевой корки, которая при повышенных температурах и одновременном действии напряжений вызывает солевую коррозию. Поэтому детали, обрабатываемые с применением РЗ СОЖ-8, после механической обработки подвергают облагораживающему травлению со снятием поверхностного слоя толщиной 0,005-0,010 мм. При сборочных и механосборочных операциях не допускают применения РЗ СОЖ-8.

Обрабатываемость титановых сплавов резанием существенно зависит от их химического и фазового состава, типа и параметров микроструктуры. Наиболее трудно обрабатываются резанием титановые полуфабрикаты и детали с грубой пластинчатой структурой. Такую структуру имеют, в частности, фасонные отливки. Кроме того, фасонное литье из титана и его сплавов имеет на поверхности газонасыщенную корку, которая сильно изнашивает инструмент.

Шлифование титановых деталей связано с определенными трудностями, что обусловлено высокой склонностью к контактному схватыванию при трении. Относительно тонкая оксидная пленка на титане легко разрушается при трении под воздействием высоких удельных нагрузок в точках контакта из-за более высокой пластичности титана по сравнению с оксидной пленкой. При трении в точках контакта двух поверхностей происходит активный перенос обрабатываемого материала на инструмент - "схватывание". Этому способствуют и другие свойства титана: повышенная упругая деформация из-за сравнительно низкого модуля упругости, более низкая теплопроводность. Благодаря выделению теплоты трущаяся поверхность обогащается газами из окружающей среды и происходит образование оксидных пленок, что повышает прочность поверхностного слоя.

При обработке титановых сплавов применяют шлифование абразивными кругами и ленточное шлифование. Для титановых сплавов наибольшее распространение в промышленности получили абразивные круги из зеленого карбида кремния, обладающего большими твердостью и хрупкостью, стабильностью физико-механических свойств и более высокой абразивной способностью, чем черный карбид кремния.

Основным способом окончательной обработки сложных криволинейных поверхностей деталей из титановых сплавов является ленточное шлифование. К преимуществам применения абразивных лент при формообразовании сложных фасонных поверхностей относится возможность обработки с линейным или поверхностным контактом между инструментом и обрабатываемой поверхностью, что значительно сокращает число формообразующих движений станка.

Обработку деталей с линейным контактом осуществляют методом обкатки. При обработке деталей методом обкатки форма инструмента сопряжена с формой обрабатываемой поверхности детали. Формообразование обрабатываемой поверхности происходит путем обкатки детали по заданной траектории вокруг.

Шлифование методом обкатки, например лопаток компрессора ГТД, производят абразивными кругами (сопряженное шлифование) или широкой абразивной лентой на станках ХШ-185, ХШ-186, MB-885, 381ЗД. При соответствующем подборе ширины ленты одновременно шлифуется вся обрабатываемая поверхность с одной стороны. Этот метод отличается высокой производительностью, и его широко применяют в промышленности при шлифовании деталей небольших размеров. Для лопаток с длиной пера более 120 мм наиболее рациональным является строчечный метод обработки узкой абразивной лентой, позволяющий достигать большой точности. Строчечный метод шлифования применяется в станках 4ШСЛ-7, ЛШ-1, ЛШ1А, ЛШ2. Обработку на них производят продольными строчками, причем направление подачи детали перпендикулярно плоскости перемещения абразивной ленты.

Продольная подача детали s осуществляется за счет возвратно-поступательного перемещения стола станка. Дискретное вращение заготовки вокруг оси обеспечивает круговую подачу s . При обработке на станке ЛШ-1 устанавливается определенная сила контактного давления Р между обрабатываемой заготовкой и абразивной лентой, которая регулируется компенсирующими пружинами.
Сложной операцией является шлифование пересекающихся поверхностей деталей, сопряженных по радиусу (например, поверхностей прикомлевых участков лопаток компрессора), которое выполняют методами обкатки и копирования. При формообразовании поверхностей методом копирования рабочие поверхности контактного копира должны быть эквидистантны на толщину абразивной ленты обрабатываемым поверхностям. Ширина ленты может превышать ширину обрабатываемой поверхности или составлять часть ее. В последнем случае формообразование радиусных участков производится поперечным движением лент относительно детали. В промышленности по этому принципу работает много станков: ЗЛШ-5 (ЗЛШ-52), ЗЛШ-9 (ЗЛШ-91) и др. Обрабатываемая деталь подается по нормали к поверхности на врезание под действием силы 50-100 Н к контактному копиру, который огибает абразивная бесконечная лента. Сила натяжения ленты составляет 10-30 Н на 10 мм ширины ленты. При обработке поверхностей с малым радиусом сопряжений стойкость лент существенно уменьшается.

До последнего времени полагали, что шлифовать титановые сплавы алмазными кругами неэффективно из-за химического сродства титана и углерода, что приводит к сильному изнашиванию режущих кромок алмазных зерен и последующему засаливанию поверхности инструмента. К тому же при алмазном шлифовании в поверхностном слое формируются остаточные растягивающие напряжения. К настоящему времени удалось создать алмазные круги на специальных металлических связках, которые синхронизировали процесс сглаживания режущих кромок зерен с их выкрашиванием из связки и обновлением рабочей поверхности инструмента, т.е. обеспечили самозатачивание алмазного круга. Алмазное шлифование успешно применяется на ММПП "Салют" при шлифовании пера лопаток компрессора.

Разновидностью алмазного шлифования является обработка детали с наложением постоянного тока. Шлифование осуществляют в электролите, при этом алмазный круг служит анодом. Анодное растворение связки круга и титана на поверхности круга позволяет поддерживать постоянные режущие свойства круга. Электрохимическое алмазное шлифование, как правило, формирует в поверхностном слое обрабатываемой детали благоприятные сжимающие напряжения.

Основные особенности обработки резанием титановых сплавов следующие.

Малая пластичность, приближающая их по свойствам к высокопрочным материалам. Это видно из значений, характеризующих пластичность материалов. По этому параметру (способности к упрочнению) титановые сплавы резко отличаются от жаропрочных, имея примерно в два раза большие значения и значительно более низкие б и ф. Поэтому при обработке титановых сплавов вследствие их пониженной пластичности величина составляющей силы резания на 20% ниже, чем для сплавов на основе железа.

Малая пластичность титановых сплавов приводит к тому, что при их обработке образуется специфическая стружка, по внешнему виду похожая на сливную, имеющая трещины, которые разделяют ее на очень слабо деформированные элементы, прочно связанные между собой тонким и сильно деформированным контактным слоем. Образование такой формы стружки объясняется тем, что с ростом скорости резания пластическая деформация не успевает стружки у менее пластичных титановых сплавов или при обработке с большими подачами происходит при меньших скоростях резания. Так, при обработке титанового сплава ВТ2 элементная стружка образуется при меньших скоростях резания, чем при обработке сплава ВТ1.

Высокая химическая активность, выражающаяся при обработке резанием способностью титановых сплавов к активному взаимодействию с окружающей средой. Благодаря этому по мере увеличения температуры в зоне резания происходит сильное поглощение кислорода и азота воздуха, что способствует повышенному окислению. Это вызывает интенсивное окалино-образование и охрупчивание материала вследствие диффузии кислорода в обрабатываемый материал и его наводороживания. Поэтому при обработке резанием титановых сплавов выделяется относительно меньшее количество тепла, чем при обработке резанием жаропрочных сплавов.

Вместе с тем титановые сплавы имеют еще более худшую теплопроводность, чем жаропрочные стали и сплавы; следствие этого при резании титана возникает в среднем в 2,2 раза большая температура, чем при обработке стали 45. Поэтому температура в зоне резания вследствие плохой теплопроводности титана продолжает оставаться высокой, вызывая тем самым структурные превращения и сильное взаимодействие с воздухом.

В результате пониженных пластических свойств титановых сплавов образование в процессе деформации опережающих макро протекать в основном объеме, концентрируясь в контактном слое, где возникают высокие давления и температуры. В связи с этим в отличие от обычных сталей у титановых сплавов меняется вид стружки с ростом скорости резания в обратном направлении: сливная стружка переходит в элементную. Это изменение формы и микротрещин занимает значительное место. Это объясняет также образование при резании титановых сплавов больших углов сдвига с малой усадкой стружки; как правило, коэффициент усадки ее по длине близок к единице. Это видно из значений коэффициента усадки различных марок титановых и твердых сплавов, а также зависимости продольной деформации стружки от скорости резания (б) и подачи. В ряде случаев в результате поглощения кислорода и азота воздуха при обработке титановых сплавов получается так называемая отрицательная усадка, т. е. длина образующейся стружки 1С больше пути резания. При обработке на тех же режимах резания, но в струе аргона, отрицательной усадки не наблюдается. Уменьшение усадки.стружки с ростом скорости резания объясняется также резким снижением сил трения стружки о переднюю поверхность режущей части резца. Титановые сплавы характеризуются высокими коэффициентами трения, что ограничивает их применение для подвижных соединений. Несмотря на это, в процессе резания на контактных поверхностях коэффициент трения снижается до 0,2-0,4. Это примерно в 1,5 раза меньше, чем для жаропрочной стали ЭИ787. Малая усадка стружки приводит к повышенной скорости скольжения ее по передней поверхности инструмента при тех же скоростях резания.

Рассмотренные выше особенности резания титановых сплавов и прежде всего высокая активность титана по отношению к кислороду и азоту воздуха резко снижает площадь контакта стружки с передней поверхностью инструмента; по сравнению с обработкой конструкционной стали той же твердости эта площадь снижается в 2-3 раза. Окисление контактного слоя стружки приводит к повышению ее твердости. Малая площадь контакта стружки, сочетаясь с достаточно высокой прочностью титановых сплавов, приводит к большим нормальным давлениям и при повышенной твердости стружки - к повышенному износу, а при малой теплопроводности титана - к высоким температурам, вызывающим явления схватывания и задиры. С другой стороны, активное воздействие внешней среды при обработке титана резанием вызывает интенсивное наростообразование.

Так же как и при обработке нержавеющих и жаропрочных материалов, титановые сплавы оказывают высокое абразивное воздействие на инструмент вследствие содержания в них высокотвердых включений в виде окислов нитридов и карбидов; титановые сплавы характеризуются и пониженной виброустойчивостью движения резания. При обработке титановых сплавов происходит увеличение составляющих силы резания при относительно небольшой. В отличие от жаропрочных титановые сплавы сильно снижают свою прочность при повышении температуры. Интенсивность уменьшения прочности превышает даже эти значения для сплавов на основе железа.

Обработка резанием по корке многих кованых, прессованных или литых заготовок из титановых или других видов труднообрабатываемых материалов вызывает дополнительное ухудшение обрабатываемости. Это обусловлено усиленным абразивным и ударным воздействием на рабочие поверхности инструмента неметаллических включений, окислов сульфидов-силикатов, а также многочисленных пор, образующихся в поверхностном слое при отливке или прессовании. Последнее еще более усиливается значительными поверхностными неровностями корки.

При определении оптимальных режимов резания титановых сплавов особое внимание следует уделять вопросам техники безопасности. Образование тонкой стружки, тем более пыли, в процессе стружкообразования приводит к ее легкому воспламенению с интенсивным горением. Титановая стружка, покрытая маслом, склонна к самовозгоранию. Пылеобразная стружка взрывоопасна и вредна для здоровья обслуживающего персонала. Учитывая изложенное, не следует допускать скоплений титановой стружки; при обработке резанием титановых сплавов не следует назначать подачи менее 6,08 мм/об, работать инструментом с износом более 0,8-1,0 мм, со скоростями резания более 100 мм/мин. При точении титанового сплава ВТ1 допускается большая скорость резания- до 150 м/мин.

Следует учитывать, что электрохимическая обрабатываемость.титановых сплавов сильно зависит от величины пульсации выпрямленного тока. Так, их обработка почти прекращается (за исключением использования электролита № 4) при использовании генераторов типа АТН 5000/2500, дающих сглаженную пульсацию. Наоборот, хорошие результаты дает пульсирующая форма тока, получаемая от трехфазного выпрямителя типа ВКГЮОА.

Титан - один из самых интересных и сложных для обработки металлов. Его уникальные свойства нашли широкое применение в разных отраслях промышленности. Механическая обработка титана, в сравнении с обычной сталью, более чем в пять раз сложнее, поэтому для создания из него изделий применяют специальные приемы и оборудование.

Основные проблемы, возникающие при обработке титана, и средства их решения

Основной проблемой, возникающей при обработке титана, является его склонность к задиранию и налипанию на инструмент. Также одним из усложняющих факторов является его низкая теплопроводность. Большинство металлов сопротивляются плавлению в гораздо меньшей степени, поэтому при контакте с титаном растворяются в нем, образуя сплавы. Это приводит к быстрому износу применяемого инструмента.

Чтобы уменьшить задирание и налипание, а также для отвода выделяемого тепла, применяют следующие способы:

  • при резке, а также иной обработке титана используют охлаждающие жидкости;
  • заточку изделий выполняют с применением инструментов, изготовленных из твердых сплавов металлов;
  • обработку металла резцами выполняют при гораздо меньших скоростях, чтобы избежать излишнего нагрева.

Эффекты налипания и задирания титана обусловлены его высоким коэффициентом трения, который относят к серьёзным недостаткам этого металла. В своем большинстве изделия из титана быстро поддаются износу, поэтому чистый состав этого металла редко используются для изготовления изделий, которые применяются в условиях трения и скольжения. При трении титан налипает на трущуюся поверхность, вызывая связывающий эффект и уменьшая скорость движения сообщающихся деталей. Способами, которые устраняют этот негативный эффект, выступают азотирование и оксидирование титана.

Азотирование титана - технологический процесс, который заключается в нагреве изделия из титанового сплава до температуры 850 0 С - 950 0 С и его выдержке в течение нескольких суток в среде чистого газообразного азота. В результате происходящих химических реакций на поверхностях изделия образуется пленка из нитрида титана, имеющая золотистый оттенок и обладающая большей твердостью, а также большим сопротивлением к стиранию. Изделия, прошедшие такую обработку, обладают повышенной износостойкостью и не уступают по своим характеристикам изделиям, изготовленным из поверхностно упрочнённых специальных сталей.

Оксидирование титана - распространенный метод, заключающийся в нагреве титанового изделия до 850 0 С и его резком охлаждении в водной среде, что вызывает образование на поверхности обрабатываемой детали плотной пленки, которая хорошо связывается с основным слоем материала. При этом сопротивление стиранию и общая прочность изделия возрастает в 15-100 раз.

Некоторые особенности резки и сверления титана

Нарезка заготовок является очень сложным технологическим процессом, сопровождающимся использованием специальных инструментов и оборудования. Листы разрезаются гильотинными ножницами, а заготовки из сортового проката - распиливаются механической пилой. Небольшие по диаметру пруты нарезают с помощью токарных станков.

Фрезерование титана остается наиболее сложным способом его обработки. Он налипает на зубьях инструмента (фрезы), что значительно затрудняет работу с заготовкой. Поэтому для такого способа применяют инструменты, изготовленные из твердого сплава металлов, а процесс обработки сопровождают использованием охлаждающих смазок и жидкостей, которые обладают большой вязкостью.

При выполнении операций сверления важно, чтобы стружка, образующаяся в результате сверления, не накапливалась в отводных каналах, в противном случае это может привести к преждевременному износу и поломке инструмента. При сверлении применяют фрезы, изготовленные из быстрорежущей стали.

Особенности соединения титановых изделий и их элементов

Если титановое изделие выступает элементом конструкции, то соединить детали, изготовленные из титановых сплавов, позволяет применение таких методов:

  • сварка;
  • пайка
  • механическое соединение с использованием заклепок
  • соединение с применением болтового крепления.

Основным методом соединения выступает сварка, представляющая обычную промышленную технологию. Чтобы обеспечить прочность сварного шва соединение элементов выполняют в среде инертного газа или специальных бескислородных флюсов. Также для этого оберегают шов с применением различных защитных элементов. Взаимодействие расплавленного титана с такими химическими элементами как водород, кислород и азот, содержащимися в воздушной смеси, при нагреве приводит к росту зерна металла, изменению его микроструктуры и хрупкости сварного шва. Сварочные работы выполняют на большой скорости.

Также существует метод сварки в контролируемой среде, который применяется для выполнения работ, требующих большой ответственности. При необходимости соединить небольшие по своим размерам элементы, их помещают в специальные камеры, заполненные инертным газом. В случае соединения элементов большего размера сварочные работы выполняют в специальных герметично изолированных помещениях. Сварка титана - ответственная работа, которая доверяется исключительно подготовленным специалистам, имеющим необходимый практический опыт и навыки.

Пайка титана применяется в случаях, когда проведение сварочных работ невозможно или нецелесообразно. Она также осложнена химическими реакциями. Титан в расплавленном состоянии демонстрирует высокую химическую активность и прочно связан с пленкой окиси, формируемой на поверхностях обрабатываемой детали. Большинство распространенных металлов непригодны в качестве припоя для соединения титановых элементов, для этих целей используются только чистые по своему составу алюминий и серебро.

Механическое соединение элементов из титана с помощью клепок и болтовых креплений также выполняется с применением специальных материалов. В большинстве случаев заклепки изготавливают из алюминия, а применяемые болты покрываются напылением серебра или синтетического тефлона. Это вызвано тем, что при завинчивании титан проявляет свое свойство налипания и задирается, в результате соединения элементов становятся ненадежными, не обеспечивают прочной фиксации.

Высокотемпературная прочность увеличивает силу резания при механической обработке. Высокое упрочнение и большая скорость деформации также увеличивают энергию, необходимую для удаления стружки, что приводит к более высоким температурам. Титан реагирует практически со всеми материалами при высоких температурах, приводя к химическому износу режущих инструментов.

Кроме того, низкая теплопроводность титановых сплавов является одним из факторов, ограничивающих производительность. В большинстве других материалов тепло передается в стружку. Однако при низкой теплопроводности титана тепло переходит в инструмент. Твердость карбида снижается по мере повышения температуры, что означает, что скорость резания и срок службы инструмента ниже для обработки титана по сравнению со сталью. Когда скорость резания увеличивается с 50 м / мин. до 100 м / мин. в титане анализ FEA предсказывает повышение температуры на 250ºC.


Поэтому для оптимизации производительности инструменты должны надлежащим образом охлаждаться. Правильный расход охлаждающей жидкости означает улучшенный срок службы инструмента и более высокие максимальные эффективные скорости резания. Если он не охлаждается должным образом, инструмент быстро нагревается. Это может сократить срок службы инструмента и повлиять на чистоту поверхности из-за появления наростов на режущей кромке, которые возникают, когда материал заготовки липнит на режущую кромку.


Традиционное внешнее охлаждение, предназначенное для обработки, часто попадает за зону резания, а заказные решения высокого давления (1000 мм на квадратный метр или выше) могут стоить десятки тысяч рублей. Альтернативой является поставка охлаждающей жидкости через внутренние отверстия.
При таком подходе СОЖ попадает туда, где инструмент режет заготовку, обеспечивая эффективную подачу хладагента, теплопередачу и смазывающую способность. Испытания жизненного цикла инструмента, сравнивающие внешнее охлаждение с внутренней подачей СОЖ на одинаковых геометриях режущих кромок, показывают более чем в два раза увеличенный срок службы инструмента при внутренней подачи.

При токарных испытаниях при 150 sfm, сравнивающих этот инструмент с внешней подачей СОЖ при обработке титана, пластины Beyond Blast при давлении охлаждающей жидкости 100 фунтов на квадратный дюйм обеспечивали на 25 процентов больше срока службы инструмента, чем стандартные пластины с использованием СОЖ высокого давления 1000 psi.


При использовании вставных круглых фрезерных пластин, внутренняя подача обеспечивает более чем в 2,5 раза лучший срок службы инструмента. Увеличение скорости также сильно влияет на срок службы инструмента. Простое увеличение скорости от 150 до 187 SFF на стандартном инструменте уменьшает срок службы инструмента на 60 процентов. С помощью внутренних отверстий для охлаждающей жидкости срок службы инструмента уменьшался всего на 23 процента при увеличении скорости. Срок службы этих фрезерных инструментов на более высокой скорости был почти в два раза больше, чем стандартные инструменты на низкой скорости. Это связано с эффективным регулированием температуры, обеспечиваемым этим подходом к доставке хладагента.


Шпиндельные соединения


В системном подходе важна также роль шпинделя. Обрабатывающие устройства испытывают трудности при достижении высоких скоростей удаления металла, учитывая низкую скорость резания и высокие силы резания, характерные для титана. На протяжении многих лет производители станков улучшали жесткость и демпфирование на шпинделях и станочных конструкциях. Шпиндели спроектированы с высоким крутящим моментом при низких скоростях вращения. Хотя все эти достижения повышают производительность, соединение шпинделя часто остается слабым звеном.В большинстве случаев соединение инструмента-шпинделя определяет, сколько материала может быть удалено в данной операции.


Высокопроизводительная обработка обычно характеризуется использованием высоких подач и агрессивной глубиной обработки. Благодаря постоянным достижениям в режущих инструментах существует потребность в шпиндельном соединении, которое лучше использует доступную мощность станка.

За последние несколько десятилетий несколько последних типов шпиндельного соединения были разработаны или оптимизированы. Благодаря хорошей цене / выгодной позиции конусность 7/24 ISO стала одной из самых популярных систем на рынке. Однако конструкция имеет ряд ограничений, связанными с точностью на высоких скоростях. Как правило, конус шпинделя начинает прокручиваться от центробежной силы начиная от скорости вращения шпинделя в 20000 об / мин. Это дает погрешности обработки,ведь конус начинает терять контакт, позволяя инструменту перемещаться вверх по шпинделю.

Конструкция Kennametal, которая недавно был улучшена для обработки титана, представляет собой интерфейс инструмента-шпинделя «KM», который закрепляет держатель инструмента с помощью шарового механизма, который действует на поверхность отверстия. В новой KM4X-системе улучшение связано с ограничением изгибов конструкции, что важно при фрезеровании материалов с высокой силой, таких как титан.

В торцевых фрезерованиях, где длительность проецирования длинна, ограничивающим фактором является этот изгиб. Новая система KM4X обеспечивает высокую силу зажима и сопротивление помехам для обеспечения высокой жесткости и высокой изгибающей способности для повышения производительности при обработке титановых сплавов.


Максимизация динамической жесткости системы

При механической обработке с установками с удлиненной длиной могут возникать нежелательные регенеративные колебания (вибрации) и вызывать плохую обработку поверхности, проблемы с контролем размеров и преждевременный износ инструмента. Технологи часто вынуждены сокращать параметры резания, чтобы избежать вибраций, уменьшая производительность.

Это важно, когда волнистость на заготовке, оставленной предыдущим проходом, вызывает колебания сил резания из-за изменения толщины стружки на следующей операции. Это изменение силы резания затем оставляет больше волнистости на заготовке, вызывая большее изменение сил резания, что приводит к регенеративной вибрации. Амплитуда вибрации растет и может достигать уровней, где инструмент отскакивает от заготовки или вызывает катастрофические отклонения.

Способ уменьшить вибрацию и поддерживать высокие скорости удаления металла - увеличить динамическую жесткость системы. В то время как статическая жесткость инструмента может быть увеличена за счет использования более коротких настроек инструмента или более крупных диаметров инструмента, система инструментов из Kennametal обеспечивает средства для повышения динамической жесткости за счет использования пассивного динамического поглотителя. Система разработана так, что внутренняя масса будет вибрировать на частоте, близкой к собственной частоте наиболее доминирующего режима вибрации системы. Движение внутренней массы рассеивает энергию для предотвращения вибраций.

Каждый станковый инструмент имеет свои собственные динамические колебания, но настраиваемые адаптеры позволяют наладчику настраивать пассивный демпфер, настраивая инструмент для конкретной сигнатуры станка, даже если эти колебания меняется со временем. Эта настройка также важна, когда используются фрезы с различными массами, в которых может изменяться собственная частота системы.


В тестах металлообработки наблюдалась хорошая корреляция между динамической жесткостью и уровнями вибрации, измеренными на корпусе шпинделя. Вибрации могут не только вызывать преждевременный сбой инструмента, но и уменьшать срок службы подшипника шпинделя. Предотвращение распространения вибрации через машину будет способствовать увеличению срока службы компонентов и повышению точности работы машины с течением времени.Другими словами, использование системного подхода к обработке титана дает преимущества, превышающие срок службы инструмента. Другие преимущества включают более последовательное и улучшенное качество деталей, улучшенную производительность шпинделя и более высокую точность станков.

Концепции сверления

Широкий запас противовесов заставляет действовать против маятникового движения сверла.

Сверление в титане - еще одна сложная задача. Благодаря механическим и физическим свойствам этого материала создание отверстий высокого качества с точки зрения прямолинейности, цилиндричности и округлости является сложной задачей. Высокие динамические силы обычно связаны с быстрой сегментацией стружки, которая в случае титана происходит при очень низких скоростях резания.

В сверле Y-Tech фирмы Kennametal используется неравномерное расстояние между канавками и канавками для управления этими динамическими силами, а также маятниковое движение сверла. Положение режущих кромок создает радиальную силу, уравновешенной противоположной канавкой, прижатой к стенке отверстия. Это распределение сил уменьшает динамическое воздействие силы, что приводит к лучшей округлости и цилиндричности просверленного отверстия.

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ ПРИ РЕЗАНИИ ТИТАНОВЫХ СПЛАВОВ

Упруго-пластическое деформирование при резании метал-лов весьма сложно. Оно находится во взаимной связи с дру-гими факторами и явлениями, сопутствующими процессу реза-ния. Поэтому более полная характеристика физических основ резания титановых сплавов может быть получена лишь при комплексном исследовании тепловых явлений, деформаций по-верхностных слоев, сил резания, износа режущего инструмента и качества обработанной поверхности.

ТЕПЛОВЫЕ ЯВЛЕНИЯ В ПРОЦЕССЕ РЕЗАНИЯ

Тепло, возникающее в процессе резания, оказывает влияние на состояние, слоя под обработанной поверхностью, шерохо-ватость поверхности, точность обработки, а также на износ и стойкость режущего инструмента. Под влиянием тепла изме-няются условия трения на передней и задней поверхностях ин-струмента, деформация срезаемого слоя, наростообразование и другие явления.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ.

Исследованию был под-вергнут высокопрочный титановый сплав отечественного произ-водства ВТЗ-1. Химический состав, механические и теплофизи-ческие свойства заготовки этого сплава взяты в пределах, ука-занных в табл. 1 и 2. Выбор сплава ВТЗ-1 обусловлен тем, что он имеет (α +β)-структуру, т. е. занимает среднее положение между а- и β-сплавами, поэтому полученные при исследовании результаты являются наиболее типичными. Кроме того, сплав ВТЗ-1 получил наибольшее распространение.

Для получения сравнительных данных были исследованы также сплавы -на основе железа (ЗОХГСА) и никеля (ХН70ВМТЮ). Заготовки этих сплавов находились в состоянии поставки. Химический состав и физико-механические свойства их удовлетворяли техническим условиям.

ВТЗ-1 почти в 2 раза превышает температуру, возникающую при обработке стали 30ХГСА. Она близка к температуре, раз-вивающейся при точении в тех же условиях жаропрочного сплава ХН70ВМТЮ, процесс резания которого характеризуется весьма напряженным тепловым режимом. Сравнение получен-ных результатов с данными, приведенными в работе , пока-зывает, что температура при резании титанового сплава ВТЗ-1 в среднем в 2 раза выше температуры резания стали 40Х и в 3—4 раза выше температуры, возникающей при обработке алюминиевых сплавов. Это свидетельствует о том, что резание титановых сплавов характеризуется весьма высокими темпера-турами, физическая сущность возникновения которых изложена ниже.

АНАЛИЗ ТЕМПЕРАТУРЫ.

При резании пластичных материалов, к которым относится технический титан и его сплавы, работы упругих деформаций и диспергирования незначительны, поэтому основными источниками тепловыделения следует считать пла-стическую деформацию и трение.

Титановые сплавы по сравнению со сплавами на основе никеля и железа, как было показано выше, характеризуются меньшей пластической деформацией. Подобное заключение следует также из сравнения коэффициен-тов усадки стружки титановых и никелевых сплавов (рис. 19). Следовательно, можно предполо-жить, что при резании титановых сплавов выделяется меньшее ко-личество тепла, чем при обработ-ке сталей и сплавов на основе никеля.

Согласно приведенным данным интенсивность выделения тепла в деталь при обработке титановых сплавов ниже, чем при. обработке сплавов на основе никеля со сталью 45 выделении тепла у тита-нового сплава ВТ2 при точении сви-детельствуют и кривые на рис. 20. Можно было ожидать, что при реза-нии температура в деформированной зоне титановых сплавов должна быть ниже, чем у сталей. Однако рассмот-ренные ранее результаты эксперимен-тального исследования температуры резания показывают обратное. Темпе-ратура резания титанового сплава (см. рис. 17, б) достигает 800° С уже при υ = 40 м/мин, s = 0,17 мм/об и t — = 1,5 мм; при резании же стали 45, по данным исследования , анало-гичная температура возникает при значительно более высоких параметрах режима резания, а именно: v= 100 м/мин, s = = 0,29 мм/об и t=2 мм.

Таким образом, высокой температуре резания титановых сплавов, значительно превосходящей температуру три анало-гичной обработке сталей, соответствует сравнительно неболь-шое количество выделившегося тепла, меньшее, чем при резании в тех же условиях сплавов на основе железа и никеля.

ИЗНОС РЕЖУЩЕГО ИНСТРУМЕНТА ПРИ ПОЛУЧИСТОВОЙ И ЧИСТОВОЙ ОБРАБОТКЕ.

При чистовом и полулистовом непрерывном точении исследуемых титановых сплавов резцами, оснащенными пла-стинками из однокарбидного твердого сплава, процесс износа может быть представлен в следующем виде. В начальный пе-риод резания на задней поверхности резца, вдоль режущей кромки, наблюдается появление характерных штрихов износа, являющихся результатом трения между соответствующим кон-тактным участком резца и поверхностями обрабатываемой за-готовки. Износ по передней поверхности при этом представляет след сходящей стружки и имеет вид лунки, более или менее оформленной в зависимости от условий обработки (режима ре-зания и марки твердого сплава). При дальнейшем резании происходит развитие износа как по передней, так и особенно по задней поверхности (рис. 57, д—ж; 58, д). На передней поверх-ности развитие износа проявляется в окончательном оформлении лунки, увеличении ее размеров, сопровождающемся устранением перемычки между лункой и режущей кромкой (рис. 57,а), в возникновении местного прорыва кромки (рис. 57,6 и г) и, на-конец, в разрушении лунки, при котором по ее наружному кон-туру выкрашивается кромка (рис. 58,а), вследствие чего передний угол в зоне контакта оказывается отрицательным. Так как при выкрошенной режущей кромке требуемое качество об-работанной поверхности и. прилегающего к ней слоя не может быть гарантировано, то при чистовой обработке деталей из титановых сплавов износ передней поверхности, определяющий необходимость переточки резцов, следует характеризовать ста-дией исчезновения перемычки или началом образования местного прорыва кромки. Этим этапам износа по передней поверхно-сти, как показывают наблюдения и результаты исследования (рис. 57,6 и г), соответствует износ по задней поверхности, равный 0,3—0,4 мм. При получистовом точении, основываясь на результатах проведенных исследований остаточных напря-жений первого рода и наклепа, а также исходя из требований точности и чистоты обработки, оказывается возможным допу-щение большего износа по передней поверхности, определяе-мого прорывом перемычки и наличием выкрашиваний режущей кромки в зоне контактных поверхностей. Такому затуплению соответствует износ по задней поверхности, равный 0,4—0,5 мм (рис. 58, д).

Согласно приведенным данным (рис. 59—62) износ по зад-ней поверхности указанных резцов по мере увеличения продол-жительности резания характеризуется закономерным измене-нием, возрастанием от узкой, не всегда четко оформленной ленточки штрихов до явно выраженной фаски износа, величина которой не превосходит указанного значения, установленного в качестве критерия за-тупления. Дальнейшее резание сопровождается наиболее ин-тенсивным развитием износа. При этом происходит не только

истирание, но и выкрашивание кромки по наружному контуру разрушенной лунки (см. рис. 58, а) —наиболее характерное для резцов, оснащенных пластинками из твер-дых сплавов ВКЗМ, ВК4 и ВК6М (см. рис. 58,б и в), и приводящее их к катастрофическому износу по задней поверх-ности в виде отслаиваний и сколов (см. рис. 58, г).

Износ резцов, оснащенных пластинками из двух- и трехкарбидных твердых сплавов, по внешнему виду (см. рис. 57, а; 58, е и ж) аналогичен износу, наблюдаемому у резцов с пластинками из сплавов ВК2, ВКЗМ, ВК4, ВК6, ВК6М, ВК8, ВК8Та, ВК12Та. Однако процесс износа у этих резцов протекает значительно интенсивнее. Это заключение следует из сравнения фотографий резцов (см. рис. 57, α, в; 58, д, е, ж) и кривых износа (см. рис. 60, а, б).

Резцы из быстрорежущей стали раз-личных марок (Р18, Р9Ф5 и др.), по-добно рассмотренным, характеризуются износом, происходящим на передней и задней поверхностях, причем преобла-дание износа на задней поверхности выражено более харак-терно (рис. 63). При средних скоростях резания для резцов с пластинками из сплавов ВК2 и,ВК4 быстрорежущие резцы подвергаются настолько значительному износу, что не могут быть сравнимы с указанными резцами, оснащенными пластинками из твердых сплавов. Поэтому быст-рорежущий инструмент находит применение лишь при работе на небольших скоростях резания, в среднем не превышающих 10—15 м/мин (см. рис. 61,6), причем в тех случаях, когда не представляется возможным изготовить режущий инструмент, оснащенный твердым сплавом. Проведенное исследование износа ин-струмента, применяемого при выполнении этих видов обработки, показало, что общей особенностью затупления сверл и раз-верток, оснащенных пластинками, из твердого сплава ВК8, а также быстрорежущих сверл, разверток, метчиков и протяжек является преобладание износа по задней поверхности (рис. 64). Однако у быстрорежущих инструментов наряду со значительным износом по задней поверхности происходит быстрое притупление режущих кромок, в то время как у сверл, разверток и протяжек, оснащенных пластинками из твердого сплава ВК8, режущие кромки практически остаются острыми и при наличии износа по задней поверхности. Притупление кромок приводит не только к увеличению износа по задней поверхности, но и к потере (уменьшению) размера развернутого отверстия или протяну-того паза. Указанное явление связано с низким модулем упру-гости титановых сплавов и, следовательно, значительной склон-ностью их к упругому деформированию. Вследствие этого воз-росшие при обработке затупленным инструментом силы резания вызывают существенные упругие деформации обрабатываемой детали.